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LLM Reading Group – 7th July 2023



Objectives

● Discuss key components of modern LLM architectures
● Describe encoder only, decoder only, and encoder-decoder 

architecture using BERT, GPT, and T5 models
● Analyse factors contributing popularity of decoder only architecture
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Language Modeling and Language Models
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Language 
Model

I’ll see you at the … 
café 
airport 
office   



Major development stages in language modelling

4

The popularity of existing LLMs are 
attributed to transformers 
architectures and pre-training 
strategies.
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[1] https://arxiv.org/pdf/2303.18223.pdf

https://arxiv.org/pdf/2303.18223.pdf


LLM Success Factor – 1
Pretraining / Fine-tuning Paradigm
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Pretraining allows model to learn general language 
representations which then can be fine tuned
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Step-1 Pretrain
Lots of data, learn general aspects 

of language

● I sit on __ 
● I [M] on chair.
● I [M] chair.
● I sit on chair. It is a bird.

Step-2 Fine-tune
Adapt pretrained model to task

● Full finetuning vs parameter 
efficient finetuning

[2] https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture10-pretraining.pdf

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture10-pretraining.pdf


LLM Success Factor – 2 
Transformers Architecture
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Transformer architecture consists of an encoder and a 
decoder

8[3] https://arxiv.org/pdf/1706.03762.pdf
[4] https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture09-transformers.pdf

https://arxiv.org/pdf/1706.03762.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture09-transformers.pdf


Transformer encoder block

9[3] https://arxiv.org/pdf/1706.03762.pdf
[4] https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture09-transformers.pdf

https://arxiv.org/pdf/1706.03762.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture09-transformers.pdf


Transformer decoder block

10[3] https://arxiv.org/pdf/1706.03762.pdf
[4] https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture09-transformers.pdf

https://arxiv.org/pdf/1706.03762.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture09-transformers.pdf


Popular LLM Architectures based on Transformers 
and Pretraining
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Comparing popular LLM architectures 
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Encoder-only Architecture
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BERT - Bidirectional Encoder Representations from 
Transformers (2018)
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● BERT only uses Transformers 
Encoder and not the decoder 
part

● It generates contextualized 
embeddings from bidirectional 
context for input text which can 
then be used as features for 
downstream tasks.

[5] https://www.geeksforgeeks.org/explanation-of-bert-model-nlp/

https://www.geeksforgeeks.org/explanation-of-bert-model-nlp/


BERT – Input representations 

15[6] https://arxiv.org/pdf/1810.04805.pdf

https://arxiv.org/pdf/1810.04805.pdf


BERT – Pretraining strategies
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1. Masked Language Modeling 

Original : "The cat sat on the 
mat." 
Masked : "The [MASK] sat on 
the mat.”

● Forces BERT to learn 
contextualized usage of word

2. Next Sentence Prediction

Input :[CLS] the man went to 
[MASK] store [SEP] he bought 
a gallon [MASK] milk [SEP] 

Label : IsNext

●  Later work has argued this 
“next sentence prediction” is 
not necessary

[6] https://arxiv.org/pdf/1810.04805.pdf

https://arxiv.org/pdf/1810.04805.pdf


BERT - State of the art results on a broad range of 
tasks

● Finetuning BERT led to new state-of-the-art results on a variety of 
tasks – Indicating BERT is useful for natural language understanding 
tasks

17[6] https://arxiv.org/pdf/1810.04805.pdf

https://arxiv.org/pdf/1810.04805.pdf


BERT - Limitations

● Lack of generative capabilities
● Lack of Sequence-to-Sequence Modeling
● Lack of Autoregressive Training

18[2] https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture10-pretraining.pdf

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture10-pretraining.pdf


Decoder-only Architecture
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GPT – Generative Pretrained Transformer (2018)
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● It only has transformer decoder 
part and not the encoder

● It predicts the next word in a 
sequence given the previous 
words, allowing it to generate 
text that is coherent and 
contextually appropriate.

[7] https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf


GPT – Input / Output representations 

21[8] https://towardsdatascience.com/language-models-gpt-and-gpt-2-8bdb9867c50a

https://towardsdatascience.com/language-models-gpt-and-gpt-2-8bdb9867c50a


GPT – Pretraining strategy

● Autoregressive Language Modeling Objective as opposed to Masked 
Language Modeling in BERT

● This makes them inherent language models!

22
[2] https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture10-pretraining.pdf

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture10-pretraining.pdf


GPT and GPT 2 – Great results!
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● GPT results on NLI tasks ● GPT - 2 generated convincing 
sample of text

[2] https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture10-pretraining.pdf

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture10-pretraining.pdf


GPT - Limitations

● Lack of Bidirectional Context
● Limited Pre-training Objectives
● Not primarily useful for “Analysis” tasks 
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Encoder-Decoder Architecture
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T5 – Text-to-Text Transfer Transformer (2019) 
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● Utilizes both encoder and 
decoder parts of transformer

● It has a task-agnostic 
architecture; meaning same 
model can be trained on variety 
of tasks.

[9] https://medium.com/analytics-vidhya/t5-a-detailed-explanation-a0ac9bc53e51

https://medium.com/analytics-vidhya/t5-a-detailed-explanation-a0ac9bc53e51


T5 – Text-to-Text Framework

27[10] https://arxiv.org/pdf/1910.10683.pdf

https://arxiv.org/pdf/1910.10683.pdf


T5 – Authors found span corruption is better than 
language modelling objective in pretraining

28[2] https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture10-pretraining.pdf

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture10-pretraining.pdf


T5 – SOTA comparisons
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● Overall, state-of-the-art 
performance is achieved on 18 
out of the 24 tasks.

● This makes T5 useful for variety 
of downstream tasks including 
machine translation, 
summarization, question 
answering, and more.

[10] https://arxiv.org/pdf/1910.10683.pdf

https://arxiv.org/pdf/1910.10683.pdf


T5 - Limitations

● Not suitable if your focus is on specific task instead of broad range of 
tasks. Fine-tuning a BERT or GPT model on a specific task might still 
provide superior results due to the task-specific architectures and 
pretraining objectives. 

● For smaller-scale tasks, or smaller labeled datasets, using BERT or 
GPT models can be more feasible and practical over T5 due to 
computations resources requirement
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Why are decoder only models dominating?

● Breakthrough Capabilities on Language, Reasoning, and Code Tasks 
(Google PaLM)

31[11] https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html


Why are decoder only models dominating?

[2] https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture10-pretraining.pdf
[12] https://chat.openai.com/

● They are are excelling at the language modelling and text generation
○ Try ChatGPT yourself!

    Creative Writing    Technical Knowledge
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https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture10-pretraining.pdf
https://chat.openai.com/


Why are decoder only models dominating?

● Emergent abilities were observed in GPT-3
○ In-context learning without gradient steps

33[2] https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture10-pretraining.pdf
[13] https://bdtechtalks.com/2022/08/22/llm-emergent-abilities/

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture10-pretraining.pdf
https://bdtechtalks.com/2022/08/22/llm-emergent-abilities/


Thank you for your attention! 
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