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Query: Dogs 

Candidates:

Ranking Model (Ranker)

Ranking models are the core of search engines.

• It takes a set of candidate documents and ranks them according to their 
relevance to the given query.
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Language model-based rankers

In this talk:

• 2019 ~ 2022: BERT, T5…, less than 1B parameters


• 2022 ~ current: GPT-3/4, LLaMA…, 7B - 175B.
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Traditional Ranking Models

• Bag-of-words (BoW):


                 Doc: Unlike cats, dogs are usually great exercise pals…. 

Term frequencies: {unlike: 1, cats: 1, dogs: 1, exercise: 1, pals: 1, …}
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Traditional Ranking Models

• Bag-of-words (BoW):


                    Query: dogs


                 Doc: Unlike cats, dogs are usually great exercise pals…. 

Term frequencies: {unlike: 1, cats: 1, dogs: 1, exercise: 1, pals: 1, …}

5



Traditional Ranking Models

• Bag-of-words (BoW):


                    Query: Puppies


                 Doc: Unlike cats, dogs are usually great exercise pals…. 

Term frequencies: {unlike: 1, cats: 1, dogs: 1, exercise: 1, pals: 1, …}
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Vocabulary mismatch



Neural Ranking Models

Encoding query and documents with deep neural networks (DNNs).
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Neural Ranking Models
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Query: Puppies

Encoding query and documents with deep neural networks (DNNs).



Neural Ranking Models

Challenges of neural ranking models

9

• Representation learning is hard.


• Needs lots of training data.


• Expensive to run.


• Not a great improvement over BOW.



Pre-trained Language Models (PLMs)

BERT arrived in late 2018, followed with GPTs, T5s …
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Pre-trained Language Models (PLMs)

Self-supervised pre-training:
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Free texts

Self-supervised  
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Transformer



Pre-trained Language Models (PLMs)

A simple adaptation of BERT for document ranking
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J. Lin, R. Nogueira, A. Yates, Pretrained Transformers for Text Ranking: BERT and Beyond, Synthesis Lectures on Human Language Technologies 14 (4) (2021) 1–325. 



Cross-encoder ranker

A simple adaptation of BERT for document ranking
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Cross-encoder ranker

A simple adaptation of BERT for document ranking
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The problem: Very slow!

Query tokens Document tokens



Cross-encoder ranker
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Method MRR@10 Query Latency (ms)

BM25 0.187 70

Cross-encoder  
(BERT large rerank BM25 top1000) 0.365 3,800 (on GPU)



Bi-encoder ranker
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Query tokens Document tokens



Bi-encoder ranker
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Query tokens Document tokens

Doc representation 
Pre-compute



Learn the Dense Representation
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Contrastive learning
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Learn the Dense Representation
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Hard negatives



Learn the Dense Representation
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ANCE: Approximate Nearest Neighbor Negative Contrastive Learning for Dense 
Text Retrieval (Xiong et al., 2019)

L Xiong, C Xiong, Y Li, K Tang, J Liu, P Bennett, J Ahmed, A Overwijk, Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval, ICLR, 2021



Learn the Dense Representation
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ANCE: Approximate Nearest Neighbor Negative Contrastive Learning for Dense 
Text Retrieval (Xiong et al., 2019)



Learn the Dense Representation
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Knowledge distillation from Cross-encoder

R Ren, Y Qu, J Liu, W Zhao, Q She, H Wu, H Wang, J Wen, RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking, emnlp, 2021



Learn the Dense Representation
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Knowledge distillation from Cross-encoder



Learn the Dense Representation
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Bottlenecked pre-training

Weak Decoder Dθ′ 

Encoder Eθ

[CLS] The [MASK] is blowing in the wind.

The [MASK] is [MASK] in the [MASK].

xenc

Bottleneck 

xdec

MLM Loss Lenc

MLM Loss  Ldec



Learn the Dense Representation
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Bottlenecked pre-training
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Learn the Dense Representation
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SOTA training pipeline: SimLM (Wang et al., 2023)

L Wang, N Yang, X Huang, B Jiao, L Yang, D Jiang, R Majumder, F Wei, SimLM: Pre-training with Representation Bottleneck for Dense Passage Retrieval, ACL, 2023



Learned Sparse representation
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• Bag-of-words (BoW):


                    Query: dogs


                 Doc: Unlike cats, dogs are usually great exercise pals…. 

Term frequencies: {unlike: 1, cats: 1, dogs: 1, exercise: 1, pals: 1, …}



Learned Sparse representation
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DeepCT (Dai and Jamie, 2020)

Z Dai, and J Callan, Context-Aware Term Weighting For First Stage Passage Retrieval, SIGIR, 2022



Learned Sparse representation
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DeepCT (Dai and Jamie, 2020)



Learned Sparse representation
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docTquery (Nogueira et al., 2019)

Nogueira, Rodrigo, Wei, Yang, Jimmy, Lin, and Kyunghyun, Cho. "Document expansion by query prediction".arXiv preprint, 2019.

Transformer (machine learning model) 
A transformer is a deep learning model that 
adopts the mechanism of self-attention, 
differentially weighting the significance of each 
part of the input (which includes the recursive 
output) data.

QG 
(T5)

What is the concept of Transformers?

Transformer (machine learning model) 
A transformer is a deep learning model that 
adopts the mechanism of self-attention, 
differentially weighting the significance of each 
part of the input (which includes the recursive 
output) data. What is the concept of Transformers?

Index

User query: What is a transformer model? BM25 Enhanced ranking list



Learned Sparse representation
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docTquery (Nogueira et al., 2019)
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Learned Sparse representation
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TILDEv2 (Zhuang and Guido, 2022)

S Zhuang and G Zuccon, Fast Passage Re-ranking with Contextualized Exact Term Matching and Efficient Passage Expansion, arXiv, 2022



Learned Sparse representation
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TILDEv2 (Zhuang and Guido, 2022)
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Learned Sparse representation
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SPLADE (Formal, et al., 2019)

BERT

[CLS] androgen receptor define [SEP]

t1 t2 t3 t4 t5

h1 h2 h3 h4 h5

MLM head

max log(1 + ReLU(w))

Sparse representation 
in BERT vocab ( |V| = 30522 )

Logits ( |d| = 30522 )

 T Formal, B Piwowarski, C Lassance, and Clinchant, SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval, 2021



Learned Sparse representation
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SPLADE (Formal, et al., 2019)
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Learned Sparse representation
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SPLADE’s wacky weights (Joel et al., 2021)

('##rogen', 251) ('receptor', 242) ('and', 225) ('receptors', 189) 
('hormone', 179) ('definition', 162) ('meaning', 99) ('genus', 89)
('is', 70) (',', 68) ('define', 59) ('the', 56) ('drug', 53) ('for', 46) 
('ring', 38) ('gene', 37) ('are', 32) ('god', 25) ('what', 18) ('##rus', 15)
('purpose', 12) ('defined', 10) ('doing', 8) ('a', 4) ('goal', 4)

Query: androgen receptor define

Blue: original input query tokens  
Orange: alternate inflections on those original tokens  

Pink: expended new tokens

J Mackenzie, A Trotman, J Lin, Wacky weights in learned sparse representations and the revenge of score-at-a-time query evaluation, 2021



Learned Sparse representation
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SPLADE’s wacky weights (Joel et al., 2021)

J Mackenzie, A Trotman, J Lin, Wacky weights in learned sparse representations and the revenge of score-at-a-time query evaluation, 2021
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('ring', 38) ('gene', 37) ('are', 32) ('god', 25) ('what', 18) ('##rus', 15)
('purpose', 12) ('defined', 10) ('doing', 8) ('a', 4) ('goal', 4)

Query: androgen receptor define

Blue: original input query tokens  
Orange: alternate inflections on those original tokens  

Pink: expended new tokens



Learned Sparse representation
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SPLADE can learn good representation with any vocabulary 
(Joel et al., 2023)

J Mackenzie, S Zhuang, G Zuccon, Exploring the Representation Power of SPLADE Models, ICTIR, 2023

• Only allow to assign weights to stopwords (|v|=150)

{

"docid": 0,

"weights": {"i": 29, "the": 43, "of": 62, "was": 138, "for": 7, "that": 44, "had": 143, "an": 74, 
"were": 118, "have": 37, "has": 16, "who": 5, "after": 1, "into": 12, "its": 45, "no": 142, 
"what": 96, "we": 63, "through": 58, "most": 50, "did": 146, "being": 12, "didn": 15, 
"because": 139, "should": 43, "why": 12, "having": 54, "am": 69, "further": 49, "doing": 63, 
"itself": 74, "themselves": 70, "ourselves": 51}


}



The problem of BERT-based rankers
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So far..



The problem of BERT-based rankers
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So far..

Trained and tested on MS MARCO: in domain setting



The problem of BERT-based rankers
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Not effective under transfer domain setting

N Thakur, N Reimers, A Rücklé, A Srivastava, BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation of Information Retrieval Models, NIPS, 2021



LLM-based methods
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• 2019 ~ 2022: BERT, T5…, less than 1B parameters


• 2022 ~ current: GPT-3/4, LLaMA…, 7B - 175B.

In domain setting

Zero-shot setting



LLM-based methods
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InPars (Bonifacio et al., 2022)

L Bonifacio, H Abonizio, M Fadaee, R Nogueira, InPars: Data Augmentation for Information Retrieval using Large Language, SIGIR, 2022



LLM-based methods

44L Bonifacio, H Abonizio, M Fadaee, R Nogueira, InPars: Data Augmentation for Information Retrieval using Large Language, SIGIR, 2022

InPars (Bonifacio et al., 2022)



LLM-based methods
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HyDE (Gao et al., 2023)

L Gao, X Ma, J Lin, J Callan, Precise Zero-Shot Dense Retrieval without Relevance Labels, ACL, 2023



LLM-based methods
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HyDE (Gao et al., 2023)

L Gao, X Ma, J Lin, J Callan, Precise Zero-Shot Dense Retrieval without Relevance Labels, ACL, 2023



LLM-based methods
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LameR (Shen et all., 2023)

T Shen, G Long, X Geng, C Tao, T Zhou, D Jiang, Large Language Models are Strong Zero-Shot Retriever, 2023



LLM-based methods

48

LameR (Shen et all., 2023)

T Shen, G Long, X Geng, C Tao, T Zhou, D Jiang, Large Language Models are Strong Zero-Shot Retriever, 2023



LLM-based methods
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Query Likelihood models (QLMs) for document ranking.

How likely?
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LLM-based methods
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T5-baed QLM (Zhuang et al., 2021)

Rank by query likelihood:  P(Q |D) =
t

∑
i

log p(qi)

d1 <bos>

ENCODER DECODERT5

 d2  d3  dn
… q1 q2 qt−1

…

p(q1) …p(q2) p(q3) p(qt)

Query tokens

Probabilities of next query tokens

S Zhuang, H Li, G Zuccon, Deep query likelihood model for information retrieval, ECIR, 2021



LLM-based methods
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BM25 Trad QLM QLM-T5 CE

T5-baed QLM (Zhuang et al., 2021)



LLM-based methods
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T5-baed QLM

• A follow up work shows ():

Houxing Ren, Linjun Shou, Ning Wu, Ming Gong, and Daxin Jiang. 2022. Empowering Dual-Encoder with Query Generator for Cross-Lingual Dense Retrieval. EMNLP2022 

 QLM-T5 



LLM-based methods
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LLM-based QLM for Zero-shot ranking



Conclusion & Future Directions
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• 2019 ~ 2022: BERT, T5…, less than 1B parameters


• Strong learned representation.


• Effective and efficient with training data.


• 2022 ~ current: GPT-3/4, LLaMA…, 7B - 175B.


• Strong zero-shot ability


• Current ~ future:


• How to keep efficiency for LLM-based methods?


• Interactive IR? 


